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A b s t r a c t  

Reading and co-workers introduced a new technique a few years ago called Modulated 
Differential Scanning Calorimetry or MDSC. Here the first part of  a theoretical analysis for 
this technique is given. A simple mathematical model for modulated differential scanning cal- 
orimetry in the form of an ordinary differential equation is derived. The model is analysed to 
find the effect of  a kinetic event in the form of a chemical reaction. Some possible sources of  
error are discussed. A more sophisticated version of  the model allowing for spatial variation in 
a calorimeter is developed and it is seen how it can be reduced to the earlier model. Some pre- 
liminary work on a phase change is also presented. 
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1. I n t r o d u c t i o n  

A few years ago a new method was introduced by Reading and collaborators 
called Modulated Differential Scanning Calorimetry or MDSC [1-4]. In this 
method a conventional DSC is used with the modification that the conventional 
isothermal or linear rising temperature programme is modulated by a perturba- 
tion. The resultant signal is then analyzed using a combination of an averaging 
process and a Fourier transform to deconvolute the sample's response to the un- 
derlying ramp from its response to the modulation which can then give rise to an 
underlying and a cyclic heat capacity [1-4]. The cyclic heat capacity can be di- 
vided into a signal that is in phase (with dT/dt) and a component that is out of 
phase (with dT/dt) [1, 3]. Reading has also proposed that it is useful to derive a 
fourth signal called the non-reversing component by subtracting the in-phase 
part of  the cyclic heat capacity from the underlying heat capacity. These quanti- 
ties can be expressed as heat flows [1] or heat capacities [3]. The need for a rig- 
orous theoretical analysis of  the response of  a typical non-ideal calorimeter un- 
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280 LACEY et al.: MATHEMATICAL MODEL 

der modulated conditions in order that instrumental factors can be accounted for 
by calibration has been pointed out [2, 3]. Here we present the first part of this 
analysis. Because the term Modulated DSC has become proprietary we now rec- 
ommend the name Modulated-Temperature DSC or MTDSC. 

We start, in Section 2, by deriving an ordinary differential equation (ODE) 
model for Modulated Temperature Differential Scanning Calorimetry (MTDSC). 
The model is essentially that discussed in [5-8]. Here cases where the sample 
undergoes a chemical reaction are considered and it is shown how MTDSC can 
be used to obtain better values for specific heats than are possible with conven- 
tional differential scanning calorimetry. 

Section 3 discusses possible sources of error due to the separation of  meas- 
urement into the "underlying" and "cyclic" parts. The error is found to be small 
if the frequency used is high in comparison with rates of  change of quantities of 
interest. 

In Section 4 more accurate models, with the calorimeter being considered 
one-dimensional and then three-dimensional, are obtained. It is seen that the 
procedure used for the ODE model remains valid and that these more compli- 
cated models can be reduced to the ODE version for sufficiently large periods. 

Finally, the effect of having a sample which changes phase is briefly consid- 
ered. Three possible models are discussed. The first has proportion of each 
phase dependent only upon temperature, in the second the proportion obeys 
some differential equation (like a chemical-reaction model), and the third is a 
Stefan-like model with a sharp interface between the two phases. 

2. Ordinary differential equation model 

The simplest representation of  the differential scanning calorimeter is a dis- 
crete (in space) model, with the sample and reference pans taking the tempera- 
tures T~(t) and TR(t), respectively. The rates of heat transfer between the pans 
and heat source are proportional to the temperature differences. A fuller model, 
allowing for temperature variation within the calorimeter and for heat content of 
the calorimeter, is discussed in a later section. 

To start with it is assumed that the pans' temperatures are measured precisely 
but at the end of this section this assumption is dropped. Likewise the calorime- 
ter is generally taken to be unbiased (symmetric). 

2.1 The model 

The model obtained here is essentially that appearing in [5-8]. For both pans 
having a heat capacity CR, the reference pan being empty but the sample pan 
containing a specimen with heat capacity G, the rates of temperature change and 
heat flows are related by 
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LACEY et al.: MATHEMATICAL MODEL 281 

(CR + C,)@ +f=  dQs, dTa _ dQR 
dts CR ~- dtR (1) 

where f i s  the rate of absorption of heat by any kinetic event (phase transition, 
chemical reaction etc.); of course f>0  and f<0  for endothermic and exothermic 
cases respectively. (The equations are easily modified to account for any mate- 
rial that the reference pan might contain.) 

The rates of heat transfer are simply 

d~, = Ko(TF - T~) + KI(TR -- Ts) 
dts 

(2) 

and 

dQa = Ko(TF - TR) + KI(T~ - TR), 
dtR 

using the symmetry assumption in writing down identical heat transfer coeffi- 
cients. Then, on writing 

z X T = T R - T s ,  

the measured temperature difference, the difference of Eqs (2) gives, on apply- 
ing (1), 

dAT  c dT~ + CR-- -+Kar= --g- f, (3) 

where K=Ko+2K1. 

Note that allowing for heat transfer to and from the environment by including 
terms K2(Te-Ts)  and K f f T e - T R )  in (2) results in (3) with K changed to 
K o + 2 K l  +/(-2. 

(It is also possible to include other discrete heat capacities to try to represent 
parts of the calorimeter itself. The study of the more complicated system follows 
in a similar manner and leads to similar results.) 

For modulated-temperature differential scanning calorimetry (MTDSC) T~ is 
prescribed to be 

T~ = To + bT + Bsinc0t, (4) 

for an initial temperature To, ramp b, amplitude of oscillation B, and angular fre- 
quency co. Of course this control of Ts is done via adjusting the temperature of the 
furnace, TF. Equation (4) essentially defines the phase through the convention 
that the sinusoidal part is indeed sinmt. Then 

dAT 
CR--~-  + K A T  = Csb + BCs(ocosoJt + f (5) 
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2.2 The inert  case  

If  the sample is inert (which should ideally be the case for calibration)f-~--0, 

dAT 
C~---77-, + KAT = Csb + BcoC~cosmt, 

Qt 

and 

Csb e-KVC,) C s B m  _ Ke_Kt/ca).  AT = ---~-(1 - + K2 + co2C 2 (Kcoscot + c0CRsincot 

This solution only applies exactly if K, Cs, ... are all constant but we shall see 
later (w and Section 3) something very similar applies even if they vary with 
temperature. 

The transient terms (those evolving e -K~c") are included to ensure that AT=0 
at t=-0 (TR=Ts=To initially) but for cases of interest CR/K is large compared to run 
times (and event times) and these exponentials can be neglected to give the 
steadily oscillating temperature difference 

A T = - ~ +  K2 CSB~c~ (Kcosmt + mCRsinmt 

Cb 
K 

+ 
CsBm 

-cos(rot- ,4)) = XT+ 7~T, 
"/ K ~ + ~2 c~ 

(6) 

separating the signal into its underlying ATand cyclic 3~Tparts [4-6, 9]. 
The underlying measurement of heat capacity is seen to be 

C~ = KAT (7) 

and, on writing 

[7~7] = maxT~T = 

GBm 

2 2 
~/K 2 + co C~ 

the cyclic (amplitude) measurement is 

c, - "/x2 + ~  IXzl. (8)  
Boo 

The constants CR and K that appear in (7) and (8) can be determined by cali- 
bration using a sample of known heat capacity. 
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The phase lag q0 is given by 

mCR (9) 
q) = q0b ~ tan-1 K ' 

and, for the this simple case, does not give any information about Cs but instead 
relates CR and K. It should be emphasized that this phase difference is between 
the cyclic parts AT and dTs/dt of  AT and dTJdt. If  some other signal, such as the 
heat source, is used in determining sine and cosine components of  7(Tthere will 
be an additional contribution to the phase: 7(T=17~71 COS(mt--q3b--q0s) for 
Ts= To +b t+ Bsin( mt-% ). 

The phase lag can be thought of  as a measure of how far from "ideal" the calo- 
rimeter is. For q)<< 1, that is mCR<< K, 

mBC~ 
T_-__ - -~-cosmt  

so that the temperature difference is in phase with the rate of  change of  tempera- 
ture, dTjdt. There is then a direct correspondence between heat flow and tem- 
perature difference, dQJdt = KAT, and the cyclic signal can be used in a similar 
manner to the underlying signal: 

heat capacity = Kx(maximum) temper atur atiffer ence (1 0) 
(maximum) rate of temperature rise 

With q~ not small the right hand side of(10) could be multiplied by 

co2C~ 
sec cp=~ 1 + ~ to give the correct value as in (8). Of course the only impor- 

tant quantity is the product K sec q0 which can be found by calibration. 
In practical terms these results mean that an MTDSC instrument can be sim- 

ply calibrated by using a material of  known heat capacity such as sapphire. This 
procedure is illustrated in [3]. It also means that the phase lag for an inert case 
will have some value which is a function of  the prooperties of the calorimeter 
and will usually not be zero. It will also change as a function of  temperature thus 
providing a baseline. We shall see later, Section 2.4, that deviations from this 
baseline arise as a consequence of  transitions and that these deviations can be 
used to calculate the in and out of  phase cyclic components as illustrated in [ 1 ]. 

2.3 A chemical  reaction 

In the event of  a first-order chemical reaction occurring the fraction a of 
some agent decays according to 

d a  
--~ = - a g (  T~), ( 1 1 ) 

J. Thermal Anal., 50, 1997 



284 LACEY et al.: MATHEMATICAL MODEL 

where g(T) is typically of Arrhenius type, say 

g(T) = Ae -E/RT. 

With T~=To+bt+B sinc0t and a(0)=ao=initial fraction, 

t 

a= aoexp[-!g(To + btl + Bsino3h)dtl]. 

(12) 

(13) 

If the amplitude B is small enough g can be linearized and (13) simplifies: 

t t 

a=-a~ g(T~ + bh)dtl - BIg'(T~ btl)sincohdtl] 

t t 

ooeXpl ? +btl>d, ll, l 
=a+Y, 

where the underlying fraction is (approximately) 

t 

aoexpI+ ,o+ ,,>d,l] (14) 

and the cyclic fraction is 

t 

~= -Ba Ig'(To + btl)sinmhdt~ 
o 

(For an p-th order reaction with pr  (14) is replaced by 

t 

a=ao[ l+(p-1)ao  p-1 dh .) 

It should be noted that this linearization clearly holds ifBg'<< g (" here mean- 
ing d/dT), so quantities change by relatively small amounts over halfa cycle and 

t 

BSg'sincohdh<< 1. For an Arrhenius law, (12), these require that BE/RT2<< 1 and 
o 

BAEe-E/RT/RT2o3<< 1. (Even ifthese failto hold linear ization can give r easonab le 
appr oxim ations.C er tainlyexper imentalobser vationsar econsistentwithalin- 
ear response. Taking values E=105 Jmo1-1, T--A300 K, A_~10 4 s - I ,  {o=10 -1 s -1, 
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and B=I K, the validity of  linearization is clear: BE/RT2=IO 1 while 
BAEe-En~T/R T2o~_ 10 -9.) 

The rate of  heat taken up by an endothermic reaction with heat of  reaction H 
is then, on continuing to linearize, 

f = -HM-~ttg(T~) 

t 

g' ~176 ' o (15) 

for a sample of  mass M. 
Substituting the expression (15) into the differential Eq. (5) and solving leads 

to 

t 

_~_ HM f K(s-t)/C~ AT= (1 - e -Kwc") + --~--R !e a(s)g(To + bs)ds 

+ 
CsBO) 

o)2c,(Kcoso)ti + o0CRsincot - Ke -Kt/c") U + 

(16) 

+ e -K(s-t)/c" a(s) "(To + bs)sinols - g(To + bs)~g'(To + btl)sino)h)dtl ds 
o J 

which is not immediately useful. 
To get a more helpful equation for ATthe right-hand side has to be approxi- 

mated, which in turn demands that small terms must be identified and neglected. 
To this end the variables are scaled: T=TiO, with T1 a typical absolute tempera- 
ture, such as that at the end of  an experiment; t=-Tl"~/b, since T1/b is of  the size of  
the duration of  an experiment (it is assumed that To is not close to T1 and the 
events last for the same sort of  time) and a=aoO~. 

Then 

(x = exp - d'cx (17) 

and 

"c 

~ =  -bldd-~o sin~zld'ci 
o 

(is) 

where El = coT1/b. 
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It is normal for a large number of oscillations to occur during any one event 
(so that the decomposition into underlying and cyclic parts makes sense): 
~>> 1. Integrating (18) by parts then gives 

a = a /dgcosa,- 0 1 bD-.ldO o ' (19) 

provided that 

1 d2g dg 
<< (20) 

dO 2 dO 

(rapid oscillations dominate any sensitive temperature dependence). The second 

term of (19) can be absorbed into the underlying ~ and neglected if B d_~<< 1. 
bf2 dO 

Now 

f =- HVao~ g + Tt cos~z 

= I VaJg + e__ dgsim  ) 
TI dq~ J 

i f b-~g<< 1. 

Figure 1 illustrates the form of underlying (7) and cyclic (a 7) parts as well as 
the full rate of heat absorption f taking the not necessarily accurate values 
To=300 K, b=0.2 K s q, 03=0.063 s q, B=7.5 K, R=8.3 J K q tool q,  E=10s J tool q, 
A=I 03 s J, H=I 04 J kg -1, ao=0.95, M=10 -S kg, CR=0.1 J K 1,/s W K q and 
C~=0.024 J K <. 

With the Arrhenius law g(T)=Ae  -E/RT the assumption needed are valid if 

BE BE A e -z/Rr R T~) TA e -E/RV 
R7 a<< 1, ~ •  b~ << 1, ~>> 1, E >> 1 and bf~ << 1, 

at least where (1-or)or is not small (when the reaction is noticeably underway and 
not essentially finished). 

With such a high frequency the cyclic contribution to the rate of heat absorp- 
tion comes directly from the temperature-dependent factor and the oscillatory 
part of the  concentration is unimportant: f i s  in phase with T and out of phase 
with dT/dt. 

The first integral of  (16), 

Z 

HMTla~ Ie (Ka''/bc")/~-~ -~gds, 
Cr~b o 
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HMTao b C R - . .  
can be approximated by ~ X-K~gcz[~), (using Watson's  Lemma for in- 

stance, see [10] or [11], ifKTl/bCR>>l. This last assumption is the same as the 
requirement that transients be negligible. 
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Fig. 1 The underlying (a), cyclic (b), and total (c) reaction rates 

The second of  the integral is approximately: 

HBMT~ ao ~g" 
HBMTlaOcab Ie-(K'r'JbC")(~-~)o ~g'sin~sds = Cab X(KT1/bCa)2 + Ca 2 

,KTt 
x[~-~-Rsinat - acos~z  ~ 

with the earlier assumptions, that KT~/bCR>> 1 and RTf2/E>> 1. Then 

1 B 
AT-- ~ ~(bC~ + HMag) + K2 + m2c-x 

[(CsCa(o 2 + HMKag')sinmt + (KC~m - mHMCRag')cosmt] 

so that the underlying and cyclic measurements are, approximately, 

(21) 
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C~ = C~(1 HM~g~ 
+ bCs ~' 

~ = C 4 1 + ( ~ , H  - ' 

according to (7) and (8) respectively. These can be rewritten in the more general 
forms 

and 

Cs Cs "~/1 r' 

where r=HV~-g is the (underlying) rate of  intake of  heat by the reaction and 

OR 
r' - - H M d g '  (i.e. r' is a measure of  sensitivity of  r 's  dependence on tem- 

OT 
perature). 

The two relative errors are 

rate of absorption of heat by the reaction 
ramp x sample heat capacity 

and the square of  

temperature derivative of heat absorption rate 
frequency x sample heat capacity 

Note that the latter can be rapidly decreased by increasing the frequency of  
the modulation. The former is limited since the ramp cannot take very large val- 
ues; for example, transients would not decay if b is not small compared to 
KT1/CR. 

It should be noted that, at least to leading order, the underlying response is 
the same as that for conventional DSC. 

For such an endothermic reaction, where it has been assumed that heat capac- 
ity stays constant (or nearly so), the two measured heat capacities both exhibit 
peaks, but of  generally quite different shapes and positions of  maxima. (Of 
course with an exothermic event the underlying measurement exhibits a dip al- 
though the cyclic one still has a peak.) 
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For the full Arrhenius expression, (12) the derivative is g'(t)=(EA/RT 2) 
exp(-E/RT). It follows that the shapes of the two curves are (for a first-order re- 
action) 

t 

and 

t 

(To + bt)-2exp , R(To + bt) A e-E/R(T~ 
0 

so the cyclic value takes it maximum somewhat before (corresponding to a 
lower temperature To+bt) that of the underlying. 

Determination of the theoretical variation of the measured heat capacities is 
more straightforward if the activation energy is high. With E/RT>>I (at least 
where the reaction occurs) the Frank-Kamenetskii approximation is used and 
A e  -E/RT c a n  be replaced Ae-l%U=A*e u, where 

RT, 
= T << 1, (24) 

Ta is a suitable typical temperature, say that when the reaction becomes percep- 
tible or when the reaction rate is greatest, and Uis a dimensionless (scaled) tem- 
perature given by 

T= Ta(1 + EU). 

Withthis simple exponential dependence upon temperature g'~g so that now 
C~ and C~ have peaks at the same time (and temperature) and they have quite 
similar graphs. 

The formula for the underlying concentration, (14), becomes 

L b j 
(Here ]'s=To+bt.) Following this, 

1" 

r = A*HMaoexp[ -T~- -- Ta T. 
L b 

and 

r' = A*HMaO__ETa -exp/L[T~-TaETa-- - AbTae~-x~ 1 
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are proportional to each other and contribute to make an overall rate of heat ab- 
sorption 

f =  r + Br ' s ino t  

as shown (with exaggerated oscillatory part) in Fig. 2. 

20t 
4 

15 

10 

2 3 4 
Timo/xlO a s 

Fig. 2 Reaction rate with emphasized cyclic part for a first-order, high-activation-energy 
reaction 

The theoretical underlying and cyclic values, Cs and Cs, taking To--270 K, 
b=0.05 K s -1, co=re/10 s -1, B=0.3 K, Cs=7.5.10 -3 J K -1, K=10 -2 W K -1, 
C a  = 5 .10  .3 J K-l; H=7.5.105 J kg-1, E=1.5.10 s J mol-1, A=1.6.105 s -1 (one part so- 
dium bicarbonate to ten parts alumina in a 10 -5 kg sample) are plotted in 
Fig. 3(a) while experimental values are shown in Fig. 3(b). 
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TemperaturePC 

Changes in measured values of heat capacity as functions of time for a first-order en- 
dothermic reaction with a high activation energy. In (a) simulated results are shown; 
the cyclic (broken and lower) curve has been scaled by a factor of 100 to make it more 
visible. In (b) experimental results are displayed (with 03=20 s-I); the top curve (with 
peak) shows thee underlying measurement. Cs, the next curve (no peak) gives the cyclic 
measurement, Cs; the non-reversing signal is their difference and is the lower peaked 
curve 
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Figure 3 illustrates the advantage of using the modulation. The cyclic meas- 
urement, even without using the improvement noted in the following subsection, 
gives a reasonable estimate of the heat capacity (the maximum error being about 
0.2%). Once C~ is determined its contribution can be subtracted from the under- 
lying (conventional) measurement to find the reaction rate, or "nonreversing" 
component of the signal. (The term "nonreversing" applies to the effect of  the ir- 
reversible reaction in contrast to the "reversing" part of  the signal which, in this 
case, is simply due to the specific heat of the sample.) 

The shapes of the curves are given by the form of  r, effectively by 
exp(U-A+eU), (A+=A*~TJb). After a shift of axis of  Uby lnA + this is proportional 
to exp (U-e u) (Fig. 4). (Operational parameters and quantities such as activation 
energy simply affect the size so we omit the scales on Figs 4 and 5.) 

T:- 

Fig. 4 Form o f r  a n d / ,  exp(U-eV), for a first-order endothermic reaction with a high activa- 
tion energy 

b) 
Q) 

1- .f 

Fig. 5 Form of  reaction rate for high-activation-energy reaction (a) 2nd-order reaction (b) 
3 rd-order reaction 

The form of  the graph, with a gradual increase _--(e u) and rapid decay (rather 
__e II 

like e is characteristic of a first-order reaction. With a second-order reaction r 
and r" are proportional to e~ 2 (where A;+=aoA*eTdb), with U=(T - 
Ta)/eT~ still being the normalized temperature. Again changing the temperature 

U/2 U/2 2 2 zero allows this function to be simplified, this time to (e +e- )- =l/4sech U/2, 
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which is symmetric (Fig. 5(a)). For higher-order reactions the growth o f r  and 
r' is more rapid and the decay more gradual. For example, a third-order reaction 
has r~eV/(l+A+eV) 3/2, or on shifting the temperature axis, eU/(l+eU) 3/2 
(Fig. 5(b)). 

A simpler model for a kinetic event might be given by taking the rate of  heat 
intake to be purely a function oftemperature,f=J(T~). Now supposing t h a t f  has 
a single peak near some "reaction temperature" Tc and decays to zero as IT-Tol 
gets large, then 

L Cs = Cs + 
b 

again has a single hump. Now 

C ~ C s  1+ coC~ 

takes a very different form. It has a pair of  maxima, corresponding to the greatest 
positive and negative values off ' ,  and has a minimum with the true value Cs 
where f i s  largest, that is, where ~Ts achieves its maximum. 

In practical terms the analysis given above means that in many cases it is pos- 
sible to separate out the contribution to the heat flow which comes form the sam- 
ple's heat capacity and that part which comes from the chemical reaction. We 
characterise the heat-capacity contribution as the reversing signal because it is 
clearly reversible. We prefer the terminology reversing rather than reversible 
because, as we shall see in Section 5.2, we can also separate out the contribution 
from the latent heat of  crystallisation from that due to heat capacity and clearly 
crystallisation is a reversible process. Reversing means, in this context, rapidly 
reversible at the time and temperature that the measurement is made. As men- 
tioned above, we can subtract this contribution from the total heat flow to find 
the nonreversing contribution. In the case of many chemical reactions these are 
irreversible and the meaning is clear. In other cases the chemical reaction might 
be in some way reversible but the non-reversing contribution will arise from the 
reaction not being reversible at the time and temperature of  the measurement. 
For example an equivalent analysis to that given above would apply to the loss 
ofvolatiles such as moisture during a heating experiment. It may be possible to 
reabsorb the moisture by lowering the temperature and exposing it to the rele- 
vant vapour. However, the enthalpy associated with the loss of  the volatile will 
be nonreversing as the measurement is made. In all of  these cases, chemical re- 
actions, crystallisations and loss ofvolatiles the rate at which they occur will be 
governed by some kinetic law, thus we also refer to these as kinetic or kinetically 
hindered processes [1-4]. When these occur at a measurable rate there will be 
peak in the nonreversing signal and also one in the out-of-phase (with dT/dt) cy- 
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clic signal and, therefore, in the phase lag. In many cases we have found [1--4] 
that this out-of-phase component  is small and can be neglected, thus the heat ca- 
pacity can be calculated from the amplitude of  the cyclic signal alone. This is the 
"simple" deconvolution described in [1]. In other cases it might be desirable to 
use the phase lag to obtain a more accurate value for the sample heat capacity 
and this is described in the next section. 

2.4 The use of the phase lag 

The ability to linearize and neglect transients allows a simpler approach to be 
used. All quantities are regarded as being made up of  an underlying and cyclic 
part (with no harmonics or subharmonics in the latter; [7] considers a case with 
higher harmonics present). 

Thus for Ts=To+bt+BsinoX, da/dt=--ag(Ts), the reactive rate of  heat absorption 
is approximately, with the assumed relative sizes of  physical constants in w 

f =  HM~g + BHM~g' sino~t 

(using linearization and, because of  high frequencies, retaining only the domi- 
nant cyclic part) 

..}_ t �9 = r Br smcot = underlying part + cyclic part; 

t 

as before ~ is given by -d=aoexp[-~g(to+bh)dtl] (still taking the reaction to be first- 
o 

order), and g and g'  are evaluated at T=To+bt. 
Equation (5) can then be written as 

dAT 
CR---~- + KAT = (Csb + r) + B(coCscoso~t + r'sincot). 

The solution is written as AT=AT (underlying part = equivalent response in 
conventional  DSC) + AT (cyclic part). These two parts are given (approxi- 
mately) by 

(as before) and 

S T  = l ( csb + r) 

d3~T io~t irpeiO~t} CR--dT + KT(T = BRe{~Cse - 

O)J  
(25) 
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(The cyclic parts of  the sample temperature and its rate of change are 
icob f io~b �9 �9 BIm{e }andBcoRe~e }respectwely.) 

This can be contrasted with the equivalent equation for an inert sample, 
CRdAT/dt  + KZ~T= coBRe{Csei~~ The real heat capacity is replaced by the com- 

plex heat capacity Cs-ir'/co. Employing this quantity, which was introduced in 
[4], does not alter the fundamental theory but it enables calculations involved in 
the analysis to be carried out more easily. (Complex heat capacities also appear 
in [8, 12].) 

In solving (25) we can again, because of  the high frequency, neglect changes 
in r" and G (which happen slowly compared with the variation ofe  l~~ ) as well as 
the transients to give 

where q0 is the phase lag, 

. n , .  f G  - i r ' / o ~  imt] 
7~T = to~KelK+i~-~-R e I 

= o o B G ~  1 + ( / /coG) ~ Re{ei(~ot-~)} 
K2+ ~o2c~ 

(26) 

_~ OJCR r" 
q0 = tan T + tan-1 mC~" 

The cyclic (amplitude) measurement of heat capacity is again seen to be 

@ + co2C~ x Amplitude of temperature difference 
Amplitude of rate of change of sample temperature 

=G~/1 tcoG ) 

since the amplitude of d T d d t  is coB and the calibration factor is 
4 K  z + o~24ag = Kx~]I + (o~CR/K) ~ = heat transfer coefficient x correction factor. 

It can be observed that the phase lag is made up of  two parts. The first, 
q)b=tan-l(fOCR/K) is independent of the sample and can be found either by cali- 
bration or interpolation from places where no reaction occurs; this is the "base- 
line" phase lag [1]. The second part, the corrected phase lag (q~--q0b), is 

q0o = taffl(r'/mC~) and depends upon the reaction rate as well as the sample's heat 
capacity; q0 = q% and q0o=0 if there is no significant kinetic event. 

Once q0r has been determined the heat capacity can be obtained more accu- 

rately since ql  + (r'/coG)~=sec q0c: 
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< =   ,cos,o = IA71"/K  + coseo 
Bm 

The reaction rate r can then be found from 

r = b(-Cs - C~) = K A T -  bG. 

Thus the out-of-phase component is the derivative of the heat flow arising 
from the chemical reaction with respect to temperature multiplied by the ampli- 
tude of the temperature modulation. The phase lag which arises from the instru- 
ment, see Section 2.2, is corrected for by interpolation of the baseline from 
either side of the phase lag peak. This is the "complete" deconvolution described 
in [1]. An alternative would be to take the baseline from an experiment with an 
inert sample. As mentioned above the out-of-phase kinetic component is often 
small and can be neglected during chemical reactions, loss ofvolatiles, crystal- 
lisations and glass transitions, [ 1-3 ]; however, the further refinement of using 
the phase angle can be applied if desired [ 1 ]. In the case of the glass transtion the 
separation of the signal into reversing and nonreversing components is less 
straightforward to interpret than the other kinetic process considered above, due 
to the frequency dependence of the sample heat capacity in the region of the 
glass transition. However there is a parallel between the enthalpy loss on anneal- 
ing and the other kinetic processes considered here. We shall provide a detailed 
analysis of  the glass transition in another publication [ 13]. 

The phase shift during melting is generally large, [1-3]. We present the first 
part of our analysis of melting behaviour below, Section 5, but this does not ac- 
count for the phase shift which will be the subject of a future article. 

2 .5  N o n - i d e a l  c a l o r i m e t e r s :  T h e r m a l  r e s i s t a n c e  a n d  b ia s  

Apart from requirements about the sizes of frequency and amplitude of oscil- 
lation two key assumptions above were that the temperatures measured by the 
thermocouples are precisely those of the pans and the device is perfectly sym- 
metric. This subsection discusses the consequences of one or the other of these 
assumptions (but not both together) being violated. 

Should there be significant thermal resistances between the pans and thermo- 
couples the measured temperature TsM(=To+bt+Bsinmt) and TRM are no longer 
exactly those of  the sample and reference. To keep the calculations as simple as 
possible while investigating the consequences of such an occurrence the work- 
ing is limited to a model where the heat transfer to and from a pan is only from 
and to the block; there is no direct thermal connection between the pans. The 
measured temperature for a pan is a linear combination of the true temperature 
and that of the block (corresponding to the thermocouple being at a point some- 
where between the two). 
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Starting with the simple case o f  an inert sample heat balance again gives 

(CR + Cs) dT~ = K(TF - Ts), 
dt 

C R @  = K(TF - TR), 

with the measured temperatures being 

TSM = To + b t +  Bsinc0t = (1 - rOTs + eTF, 

Te.M = (1 - ]])TR + ETF. 

Here 0<rl<l is a measure o f  the thermal resistance or error; it should be small. 
Taking the same sort o f  approach as in the previous subsect ion each tempera- 

ture Tj (j=S, F, R, SM or RM) is written as 

Tj = Toj + bt + Im{Bje~t}. 
The underlying parts (1"oj=Toj+bt) satisfy 

(CR + C,)b = K(ToF - Tos), CRb = K(ToF - Tog), 

To = TosM = (1 -- rl)Tos + rlTOF, 

and 

SO 

and 

TOR M = (1 - rOToR + T1ToF, 

~(CR +G)b 
Tos= To 

K 

(1 - rl)C~b 
Tom,~t = To 

K 

A--TM = TRM-- TSM =b(1 - n)C~ 
K 

The method o f  using the underlying measurements  is essentially the same as 
before,  the only difference being that K has been replaced by K / ( 1 - r l ) .  

Turning to the cyclic contribution, 

io~B, = (CR + C~) = K ( B F  - B~), 
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and 

which give 

and 

ira)BsCR = K(BF - BR), 

B = (1 - rl)B= + rlBF, 

BRM = (1 -- q)BR + T1BF, 

K + im(CR + G) B 
BF = K +  irlC0(CR + CD ' 

= (K+ irlmCR/( K+ i03(CR + Cs) ~R 

=== { j (K+ <) 7'  

A, BM = BRM -- BSM = B ~  - B = 
imKC,( 1 - ~I)B 

(K + icoCR)[K + iqm(CR + C~)] 

The cyclic part of  the (measured) temperature difference is 

eimt 
~TM = C0K(1 - rl)C=BRe ) 

(K + imCR)[K + iTIm(CR + C=)]~ 

(1 - r l )B~oG 

41 + (mCR/K):"41 + [qo,)(C R -I" C s ) / K ]  2 

cos(rot- q0). 

(27) 

A possible difficulty is now evident. If  C= is comparable with (or larger than) 
the bigger of  CR and K/rico (as might happen with a very large sample and very 
poor thermal contact between the thermocouples and pans), then the amplitude 
[7(TM I depends nonlinearly upon the heat capacity C=. On the other hand if C= is 
small then the calibration factor relating the ratio of  the amplitudes of  the tem- 
perature difference and of  the rate of  temperature change is 

K 
"41 + (mCR/K) z ~1 + ( ~ m C J K )  2 

1 - r l  

This reduces to the factor appropriate for good thermal conduct when 11 van- 
ishes. The phase lag q0 now also depends upon C=: 

mCR rlm(CR + C=) 
= q)b ~- tan -j - - ~  + tan -1 K 
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The effect of  heat intake by a reaction can be allowed for using the complex- 
heat-capacity approach. The underlying temperature difference is 

so C~=C~+r/b as previously. 
The cyclic part is 

A-r,,, = -L d,c, + ,-) 

r ( m c s  - i r ' ) e  i~t 1 

ATM = K(I - ~I)BRe{( K + imCR)(K+ rl[ico(CR + C~) +/])j~ 

1 + (r'/r.OCs) 2 cos(mr - ~) 
= K(1 - rl)BmC~ (K 2 + m2C2)[(K + fir,)2 + (rlm(CR + C~)) 2] 

with 

mCR r__f_' rim(Ca + C~) 
fl0 = tan - 1 T  + tan< coC~ + tan< K + r'r I 

Supposing that C~ is small enough for the inert situation to be linear the meas- 
urement of  C~ based upon the amplitude of  ATM is 

c~/_ [1 + (r ' /mCs)2][K 2 + (rimeR) 2] 
3s 

(K+ fir') 2 + [rlm(CR + G) 2] 

--____ Cs4 [1 + (r ' /mCs)2][K 2 + 0]mCR) 2] 
(K + 1]/) 2 + (]](DCR) 2 

unless Cs is only small in comparison with K/rlm and fir'_ = -K. 
The corrected phase lag also depends in a more complicated fashion on the 

reaction rate and heat capacity: 

r' [ 1]m(CR+ Cs) rlm(CR + Cs).] 
qDc = tarvl mC~ + tart-1 tan-~ 

K +  l]r" K " 

Even for cases where Cs<<CR (a "small sample"), so that when they are inert 
there is linearity, the corrected phase lag 

_= t a n - I  - -  + tan-1 - -  - tan< - -  
coC~ K + fir" 

and can depend upon the constituents of  the calorimeter through K, CR, and 11. 
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In practice nonlinear dependence of  AT upon C~ and variation of  q% with 
change of  purge gas (N2 or He) are not significant: there is good thermal contact 
and the terms in ~l can generally be neglected. Experimental results with a vari- 
ety of  sample sizes under both helium and nitrogen, a change that would greatly 
affect the quality of  the thermal contact between the crucible and the thermocou- 
ple sensors, give results that are within the range of  normal experimental error 
for heat capacity determinations, (Fig. 6), reasonable results can be obtained un- 
der both gases. This implies that problems of  poor thermal conduction do not in- 
troduce 'gross errors. We have found that the results under helium are more re- 
peatable and seem completely unaffected by sample size whereas there is a 
measurable trend under nitrogen. This suggests that for best results helium 
should be used as the purge gas. 

2.5 

2 . ~ -  

f 
1.5 

8 
0.5 

0 i ' ~ ' ~  

-0.5 
70 90 110 130 150 

Temperature/(C) 

Fig. 6 Experimental results using helium and nitrogen. C'=-Cscosq% (upper curves) and 
C"=Cssinq~ c (lower curves) are the real and imaginary parts of the (cyclic) measured 
heat capacity. Around the transition the variation between experiments is within ex- 
perimental error for the technique. Samples are 5, 10, 20 mg of polystyrene under N 2 
and He purges 

(If thermal contact were poor there would be additional difficulty due to re- 
action rate depending on T~, not on TsM: 

t t 

p[ !g('fs)d ] p[ !g(To )d ] a=aoex - t r - +b t  t 

and r=ag(Ts).)  
The same type of  approach can be taken for a biased calorimeter. Again sup- 

posing that each pan is in direct thermal contact with the block, the heat-transfer 
coefficient for the sample is now )~ times that for the reference: 

(CR + C~)-~-~ = )~K(TF - R~) 

and 
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c dTR 
R--d- f- = K(TF - TR) 

(with no kinetic event). Once again Ts=To+bt+Bsincot. 
The temperature difference TR-Ts now satisfies the differential equation 

C~ +-~/--- + 

= ~(Cs + (1 - ~)CR)(b + Bocosc0t). 

The underlying and cyclic parts (as usual ATmay be taken to be nearly peri- 
odic) are 

Z-~= ~ [ c ,  + (1 - ~)c~] 

and 

i[ot 

[C~ + (1 - ~,)CR]B(o 
�9 cos(rot-  q)). 

ZqX ~ + ~c~ 

Calibration can be used to determine the offset term (1-)~)CR (or equivalently 

(1-)~) CR/K~L) as well as the calibrating factors K'L and )~'4K 2 + co2C~,, so then 

~ xzAr = ~ +  (Z- 1)CR 

and 

cs - z'/K~ + mc~. IA-I+F O~ - 1)C~ 
Bee 

are the two measurements of  heat capacity. (The amplitude of  NTis still denoted 
by [NT]). Of  course it is now necessary to carry out a second calibrating run be- 
cause of  the extra unknown due to the bias. 

Once again the effect of  a chemical reaction is easily included. 

1 
AT= KL[bCs + r + b(l - L)CR] 

and 
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7~T=ff-~-Re{ C'-i//c~ + io~CR ei~~ 

lead to estimates -C~=Cs+r/b and C~=@s+(1-)~)CR]2+(r'co) 2 +(X-1)CR for the heat 
capacity. The corrected phase lag in this case is 

r t 
(Pc = t a n  -1 

~[C~ + (1 - )~)CR] 

and an improved value for Cs is given by 

2 2 

X'~K 2 + co CR 17(7 ] COS(Pc + 0~ -- 1)CR. 
Bo~ 

3. Processing the measurements 

One aspect o f  the experiment that is still to be discussed is the identification 
of  the underlying and cyclic parts of  the signal. 

For example, according to Eq. (21) the temperature difference AT is of  the 
approximate form 

AT(t) = F(t) + B[G(t)sino)t + l(t)coset]. 

The terms Gsincot and Icosmt account for all theoscillations: F, G, I are smoothly 
varying (and contain no terms like sin~t or coscot). 

Assuming that such a difference is measured exactly the underlying signal is 
found by taking some average. For an ideal case this means taking an integral. 
(In practice values at discrete times will be summed). Using one  period of  the 
modulat ion the measured underlying value is 

t+~/e 

- -  CO IAT(z)dz ATM(t) = FM(t) = ~ t-~/o, 

~ -dt- ) 2-~ 2 -~(t)+... 

--s s2d-~ G 1 + BLG(t)I + -t 2olz-- (t) +... 

• 
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II( s dI  s z d2I ] 
+ B t) + ~ - g ( 0  + ~ ~-(t) +. . .  

x(costotcoss - sincotsins) } ds. 

(This is given by wri t ing "c=t+s/r and expanding  F, G and I about  t.) 
The extracted under ly ing  signal is not  precisely F but rather 

_ _  2 _2 daF . B[co_l__~coso3t_ /~T=FM-----F+ yo~ --~-+.. + o~-: d2G ' -gTsmo , . . .  

d/ . d2I 
- co-1 ~-~slncot - co-2 -~-t2 cos tot .... ] 

The first Fourier  coefficients can be detenaained by either first f inding 

t+Tr/m 
(0 

ATs(t) = --IAT(z)sincotd'c 

(28) 

and 

ATdt) = r176162 
7~ t-nAo 

and then taking averages over a cycle,  

t+TCm 

A-Ts(t) = BGm(t) - ~_IATs('~)d'c 
Z ~  t-n/a~ 

and 

t+~/r 
(9 

ATe(t) = BIM(t) - 7-IArd'c)dz,  
ZK t-~Ao 

or al ternat ively calculat ing the Fourier  coeff ic ients  o f  the dif ference be tween  
AT and its "mean" 

t+~/oa 

A~ (t) = B G m ( t )  = ~ - A T M ( ' Q ] s i n c o t d ' c  
t-rc/o~ 

and 
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t+'xJm 

kTc (t) = BIM(t) - --mI[kT(z) - kTM(Z)]cos6otdg. 
7g t-~m 

For "large" values of  m these again approximate values o f  B G  and B I  but the 
two methods do give slightly different answers. The former results in 

- -  -- 2 d2F ( g2d2G ) 
ATs = BGM = 6o2 dt 2sin6ot + ... + B G + --36o2 --dr 2 + ... 

2 2 
B ( d G  d I .  ^ 

+ -77-~2 --TS-cos2mt - -73-smz6ot + ... ) ~6o k. c t r  c t r  

(29) 

and 

~ I  g d2/  ATe = BIM =-- 2 dZFcos6ot + + + 
m dt 2 "" - 3 - ~  

B (d2I  d2G . ^ } 
+ ...  

(30) 

On dividing by the amplitude B of  the sample's temperature oscillation the 
"measured" values take the form 

m 

GM = G+ - -  - -  
I1:2 d2G 

3m 2 dt  2 

1 
+ ... + oscillatorytermsof" size 2" or smaller. 

Bm 

This indicates that the error can be large i f B  is too small compared with m. 
However,  since the relevant terms are oscillatory, further averaging e.g. 

t+~/o) 

= j.__d )d GM = M(~ "~ 
t-'rJro 

can be used to reduce their size. (Of course too much smoothing might be unde- 
sirable and it certainly fails to eliminate systematic error terms such as 
(rc2/3o32)(d2G/dt2)). It is clear that if  the calorimeter and sample have constant 
physical properties the derivatives o f F ,  G and I all vanish and these errors dis- 
appear. 

The significance of  the errors is illustrated by the example of  a sample whose 
heat capacity depends upon temperature: Cs=C(7).  Using the simple ODE model 
of  Section 2, 

dAT 
CR--d-f-- + K A T  = (b + B6ocos6ot)G, 

where now linearization gives 
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Cs = C(To + bt + Bsinmt) = C + C'Bsinmt + . . . .  

where, the C, C'=dC/dTare evaluated at T=Ts+To+bt. 
The temperature difference then satisfies 

dAT 
CR--dT- + KAT =_ bC + B(mCeosmt + bC'sinmt) (+ terms in  B 2, B 3 . . . .  ) 

=bC + BRe{(mC - ibC')ei~'}. 

The leading terms in an approximate solution o f k T f o r  m and K large can be 
found either by using Laplace's method or the method of  multiple scales, again 
see [ 10] or [ 11 ]. For the latter method, a change of  time variable, t = "c/m, gives 

dAT 

d'c 

b _ Bm fr 

where ~=mCR/K. The heat capacity C is taken to vary over a much slower time 
scale, C=D(cy) with cy=6t for some very small 8. Then 

c , = d C  l dD o d d  ~m dD ? . D ,  
dT-  b dt - -b --~ - --~ - 

The oscillatory nature and slower drift of  AT are taken into account by sup- 
posing that ATdepends upon both "c and 6 in which case 

dkT ~AT 5aAT 

d'~ az 0(Y 

and the differential equation becomes 

~AT aT roB R r _ i6D,)ei~}. 
% 7 -  + Ar + = + - v  el(  

The solution is found as a series, AT_=_ATo+fATl+f2AT2+..., with the individ- 
ual terms obtained on comparing coefficients of  successive powers of  8: 

bD coB 
ATo = --~-- + --~-Re((1Di~) e~}; 

f iD' i~l. ATe= ~tbD" ~BR e e 

A T 2 - m  
~2bD" cOB f igtD" i,] 

- - - l ~ e  ~ . 

K K l(1 + iv) 3 ) 
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Combining these, returning to the original time t, and again using relations 
between derivatives (so ~5  d / d 6 = b C R / K  d/dT) yields 

2 3 2 

- -  + 7 - c  _+... 

I C iKbC" 
+ coBRe (K + icoC~) co(K + icoCR) 2 

i b 2 K C R C " I }  
+ co(K + icoCR) 3 + "" ei~~ ' 

(Still neglecting the nonlinear terms in A 2 etc.) Then 

+ +  j' 
COZcRc K b ( K  2 - co2C~) c '  K2bZCR(3coZc 2 _ K2)C ,, 

G(t) - 1s + co2C ~ + (K  2 + co2C2) 2 + (K  2 + co2C2) 3 

and 

coKC 2cobKzCRC" cobZCZK(3K 2 - co2C2)C'" 

I(t) - 1s + co2C 2 (K z + c02C2) z + (K  2 + co2C~) 3 

The expansions appear in this form on thinking of  K and coCR as having simi- 
lar sizes and C being slowly varying (or the frequency as being large) so that 

(b]..Q~ ( b -.12 C'* 
1>>  cojc >> LTJT " '  

i.e. quantities change by relatively small amounts as underlying temperature in- 
creases during one period. The expressions can be thought of  as representing the 
true underlying, sine, and cosine components of  AT. 

These can be substituted into (28), (29) and (30) to give the measured com- 
ponents: 

+ 
BbC" 

K 2 + 2 2 (coCRCOScot-- Ksincot) ... ; 
co C R  

_ 2b3C ,, coZcRc b K ( K  2 - co2C2)C" 
GM = -- sincot "~- "+" 2 2 -}- 

B K m  2 "'" K 2 + co CR (K 2 + co2C~) 2 
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vb2C~KZ(3mZc=~_ K ~) _.2=b2~_ .]C ,, § 
+L ~ 7 ~  + - . .  ~(~ + co UR)I 

-.I- 
b2C ,, 

4m(K 2 + m2C~) 
(mCRcos2mt - Ksin2mt) ... ; 

263C '' oaKC 2mbK2CRC" 
IM- BKm2COS~t+... + K2 + m2C2 (K 2 + m2C~)2 

+ [.mb2XC~(3K 2 -  m~C~) #b~X ~ . 
l ~ 7 7 ~ c ~ 7  + 3~,l~;-;2c~i] c + 

b z C  ,, 
co2 C.)-(Kcos2mt~ + mCRsin2mt . . . .  4m(K 2 + 

It follows that the underlying measurement is 

2 2 

? = c -  c,+ + ; T i c  + 

+ 
BKC' 

m2C,-(mCRcosmti - Ksinmt) + ... 
K ~- + 

while the cyclic (amplitude) measurement is 

2bmCRK C' 
~--c~/{1  ~0(K, + ~o2cI) -6 + 

b 2 K 2 -C'-2 2rc2(b)2C "' 

ibl2 mCRK C" 4 b 3 coCR . 5C'" 
+4 K2+m2c~C ~--(~I (cosmt + --K--SlnCotJ-~- 

_ l_(b)2(K z + m2C~)cos2mt + 2mCRKsin2mt C'" 

2 ~ )  X 2 + ~2CI C +"" }" 

(31) 

2bmCRKC" 
Due to the appearance of  the linear term re(K2 + m ~ ) C  in (31) the straight- 

forward use of  the cosine of  the corrected phase angle does not help significantly 
in this case. (But note that errors in the cyclic measurement can be reduced by 
using a higher frequency.) 

It can be observed that for the underlying measurement to be good the quan- 
tity C should change little over a temperature increase bCk/K: bCR/K<< C/C" or 
K/bCR>> C'/C-d lnC/dT. For the cyclic measurement a high frequency guaran- 
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tees a good estimate, even if the underlying (conventional) measurement is poor. 
For example, making m/b>> dlnC/dT makes the third term inside the square root 
of  (31) very small. 

4. One-dimensional and three-dimensional calorimeters 

Throughout this section the approach of  w is adopted. This avoids having 
to obtain quite general solutions to coupled ordinary and partial differential 
equations. 

To start with the interior of  the calorimeter is thought of  as a one-dimensional 
heat conducting medium, such as a metal bar, in which the heat equation holds. 
The two pans are represented by points on the bar which have positive heat ca- 
pacity. The one-dimensional assumption means that explicit, albeit compli- 
cated, formulae can be obtained. In the last part of  this section a more realistic 
three-dimensional configuration, for which explicit formulae are not general ob- 
tainable, is treated. 

4.1 An inert sample  on a uniform, three-sect ion bar 

To take a definite case the calorimeter is thought o f as a bar of length 31 with 
ends x=-I and x=2l. The end points take the block temperature TF. The sample 
pan is located at x=0 and the reference is at x=l. This 1/3, 1/3, 1/3 division is only 
considered as one possible example. The analysis used here easily carries over 
to more general symmetric, and even asymmetric (and branched) cases, see w 
below. 

At the pans there are no jumps in temperature 

T=Ts at x = 0  and T=TR at x=l  

and net heat flow gives the rate of change of temperature: 

-~T "~ dTs 

and 

I3Tf + _ dTR 
kSb ,- = C R - T t  . 

Here k is the thermal conductivity and Sb the cross-sectional area of  the bar. 
The sample temperature is programmed to be 

Ts = To + b t  + Bsincot = To + b t  + Irn{Be ~} 

so it is possible to find T(and TR=T[x=t) in a similar form: 
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T= T(x) + bt + Im{T(x)ei~t}. 

From the heat equation the somewhat simpler underlying part satisfies 

d2ff " pcb 
- / < x < O ,  O < x < / ,  l < x < 2 l ,  

dx ~ -  k 

where p=density and c=specific heat of  the bar, and 1"has solutions 

Ocb 2.  
= --~X + Toj - TljX 

in the intervals 

- l < x < O ( j = l ) ,  

Looking at the requirements at x=O gives 

O < x < l ( j = 2 )  and l < x < 2 l ( j = 3 ) .  

Tol = T o  2 = T o and T12 - Tll - - -  
( C~ + C~)b 

kSb 

The continuity of  temperature and conservation of  heat at x=l likewise yields 

To3 + lT13 = / 0 2  + lT12 and T13 - 7'12 = Cab 
kSb" 

Finally, the fact that at both end points (x=-I  and x=21) the temperature is the 
same ( Iv)  means that 

3pcbl 2 
To3 + 2lT13 - (To1 + / Z l x )  = k 

There are now six equations for the six unknows Toj, T~j and this linear system 
is easily solved. In particular it is found that 

Csb pcbl 
T12- 

3kSu-  2k 

and 

~pCb l2 ] bl AT = TR - 7"~ = [ - ~  + 7"02 + T~2l - To2 - 
3kSb 

x 

The underlyingmeasurement for heat capacity is then 

3k&-- (32) 
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as with the ODE model the factor 3kSb/bl can be found experimentally through 
calibration. 

This prediction can be compared with that of  the ODE model in Section 2. 
Taking this essentially steady situation (the rate of  temperature rise and the tem- 
perature differences are constant for the underlying part), the effective heat- 
transfer coefficients between the two pans and each pan and the block (the closer 
end of  the bar) can be seen to be Ko=KI=kSb/I (using the notation of  Section 2). 
(A temperature differential of  0 over a section of  bar length l results in a tem- 
perature gradient 0/7 and consequent heat flow (0/7) • cross-sectional area x ther- 
mal conductivity.) It follows that K=Ko+2KI=3kS/I and (32) is just  (7). 

Turning now to the cyclic part and again applying the heat equat ion , / rmust  
satisfy 

dx 2 - m2i ~ in each section (/= 1, 2, 3). 

Here m=(1 +i)~ with 

= ( 3 3 )  
2k"  

(This type of  spatial variation was considered inside a "large" sample in [9].) 
The solutions are then 

= Cje ~x + Aje -rex j = 1 ,2 ,  3. 

The six complex coefficients Q and Aj are determined by using the condi- 
tions at the ends of  the segments. Starting with x=O, the requirements that T=T~, 

= Im{Be i~'} 

and 

"0T -~ _ (CR + Cs) dTs 
[-~X'Jo_ kSb dt 

give 

C1 +A1 = C2 +A2=B 

and 

(C2 -Az) - (Cl - At) - 
i~o(CR + Cs)B 

mkSb 

J. Thermal Anal., 50, 1997 



310 L A C E Y  et al.: M A T H E M A T I C A L  M O D E L  

and 

The continuity o f  temperature and conservat ion o f  heat at x=l  yield 

C 2 e  ml + A 2 e  -ml = C 3 e  rnl _ A 3 e  -ml 

C ml _ -ml io3CR(C2 eml +A2e -mr) 
2e - A2e - C3e rnl -I- A 3 e  -ml - 

mkSb 

Finally, the fact that iF(-/)=ir(2/) means that 

C l e m l  + A l e - m l  C3e2ml - -2ml = q- A 3 e  . 

As with the underlying part it is now a matter at solving six linear equations 
for six unknowns;  unfortunately the coefficients  make the present  system quite 
messy  to solve on paper. Use o f  a computer  algebra package (Maple)  eventual ly 
results in 

where  q=qc-iq~, 

r m, -m, a]e  t} ?iT=Im{t(C2e +A2e ) -  

C ~ o  C~B03 , i~v 
- ~ (qocosOlt + q~sincot) = ~ Re~qe t 

and 

qc = [(ql + q2)q3 + (q2 - ql)q4]/qD 

qs = I(q~ + q2)(CRo~/kSb~) + (q2 - ql)q3 - (ql + q2)q4?qv 

2 2 
qD = [q3  + (q2  - -  q~)(CRfg/kSb~)]  + [ q 4  - (q l  + q2) (CRfo fkSb~)]  

ql = cos2/[3cosh2ll] - 1 

q2 = sin2/[~sinh2/~ 

q3 = 4(cosll3sinh/t] + cos2/~sinh2/~) 

q4 = 4(sinl[~cosh/~ + sin2/13cosh2/13). 

The amplitude o f  this cyclic part is 

C~Bo3 

so the cyclic  measurement  is 

(34) 

(35) 
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Cs- ~-~ c0---B- coB 3[q] coB 

with K=3kSb/l. 
Note that q is a function of  13l and CRCO/kSb~=3/KxCRCO/~I, or equivalently, of  

[3l and CRCO/K. Thus C~ can be expressed as (K]2~71/coB)x a calibration constant 

([3//3[q]) which depends upon CRCO/K and 13l. 
The calibration constant differs from that for the simple ODE model of  Sec- 

tion 2 in its complexity, and through its dependence upon [3l=f~-pc/2k l. For a 

fixed frequency co it can be determined via calibration at that frequency. Since 

co controls the calibration constant through [3l and CRCO/K two calibrating runs 
would be needed to fix this factor for all frequencies. It should be noted that this 
procedure relies on the precise form o f q  as given by (35). Other one-dimen- 
sional configurations (with different lengths, cross-section areas etc.) give rise 
to different functional forms. Given this uncertainly calibration should be done 
over a suitable range of  frequencies and interpolation used as necessary. 

The Eq. (34) for the cyclic part of  the temperature can be alternatively writ- 
ten as 

C~Bo _ f e  o~t 

K [ p 3  

where P=[3l/3q takes the role of  I+icoCR/K in the ODE model. The phase lag is 
n o w  

q0 = % - tan Re~P//t = tanl--'---q~ qc 

4.2 A reacting sample on a uniform, three-section bar 

Since the sample still has the set temperature Ts=To+bt+sincot the concentra- 
tion and the rate of  absorption of  heat by the reaction are as in Section 2 for the 
first-order reaction: 

l 

and 

f=  r + Br" sincot 

with r=--dg( To+bt) and r'--~g' ( To+bt). 
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Once again the complex heat capacity C~-ir'/o3 can be substituted for C~ to 
give, in place of(34), 

%+t t 

Boo rCs - ir'/o~ i~t ) 
- ~ - R e  1 ~ff -e I" 

As before the cyclic measurement becomes 

which can be improved by multiplying by cosq0c, the corrected phase lag q0c being 
given by 

q0c = q3 - q0b = taft I r' 
r 

Thus the baseline subtraction method proposed by Reading [ 1] is also valid 
in this more sophisticated model. 

4.3 One-d imens ional  general iza t ions  

As mentioned above the same approach can be taken to find explicit formulae 
for the calibration factors (and phase lags) using other one-dimensional models 
for calorimeters�9 The complexity of  the expressions increases with intricacy of 
the model but all typically involve trigonometric and hyperbolic functions of ra- 
tios of length scales (/) of components of  the calorimeter to diffusion lengths 
(@pcco = 1/213). 

The simplest representation of  all is to regard the two bars as being isolated 
from each other so that the calorimeter consists of  two bars, each lying between 
x=0 and x=l, with the temperatures atx=0 both being TF, one bar connected to the 
sample pan and having temperature Ts at x=l, and the other leading to the refer- 
ence pan where the temperature is TR [ 14]. 

The temperature in each pan satisfies the heat equation pc~T/Ot=-kOZT/Ox 2. The 
configuration is sketched in Fig. 7. 

Conservation of heat at the pans gives 

ks~Tlx I+(CR+ Cs)-~7 = 0 
Ox = 

for the sample bar and 
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ksaT _ dTR 
x=l + o 

for the reference bar. 

Sample bar: 

0 l 
I I 

TF T~ x 
aT a2T pc :k  

Reference bar: 

0 l 
i I 
TF T~ x 

igT .a2T 

Fig. 7 Simple one-dimensional calorimeter: two bars leading from heat source at x=0 to the 
pans at x=l 

For this system the problems for the temperatures in the pans can be consid- 
ered in isolation, but using the fact that T=TF at x=0 for both. 

Once again, on taking the usual Ts, the temperatures in the bars take the form 

pcbx: im{~(x)ei~t } T= Toj + Tux + - - - ~  + 

with 

T j =  Cje mx + Aje-mX; 

where j= l  for the sample bar and 2 for the reference bar. 
The constant To], T~I, CI and A I can be found using the two equations at x=l; 

they then fix TF. Once TF is known ToE, Tl2, C2, A2 and TR can be determined. The 
outcome is a version of(34) with a simpler version of  (35). 

Sample pan 
T=T 

5 

- e  o 2s 

T = T  T = T  T = T  
F SH F 

Reference pan 
T=T 

R 

T 
T = T  

nH 

Fig. 8 One dimensional-calorimeter with thermal resistances 
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A more complicated model for the calorimeter regards it as a bar, as in w 
and w with the thermocouples 1/3 and 2/3 along, but with thermal resistances 
between those points and the pans (c.f. w The set-up is shown schematically 
in Fig. 8. 

The differential equations are the same as in w but, even for an inert sam- 
ple, the boundary conditions differ in that 

at x = 0 T= TsM = To + bt + Bsincot 

(measured and programmed temperature r 

(CR + cs) dT~ = K~(TsM T~) 

(rate of  increase o f enthalpy of  sample = rate of  heat flow between x=0 and 
pan = heat transfer coefficient x temperature jump = jump in heat flow in bar); 

_ dTR " ~ T  "I+ 
a t  x = l T = TRM, CR-"~-- = Kt(TRM - Tr,) = k S b ] - - |  

LaxL 

Again putting T=l'(x)+bt+Im{ T(x)e it~ and solving the resulting ordinary dif- 
ferential equations gives: 

for the underlying part, AT = constant x C~; 
A . 

for the cyclic part, 7(T = BCsRe{ Tell~ 
A 

where T involves trigonometric and hyperbolic functions (c.f. w but has in 
its numerator a factor [I+io~(CR+Cs)/Kt] (c.f. (27)). 

The same comment  as in w applies: observations in real calorimeters give 
no indication of  significant thermal resistance, (CR+Cs)OO/Kt is negligible, and 
the possibly troublesome factor reduces to a constant (e.g. 1). 

Finally, in this subsection it is possible to look at biased devices. Asymmetry 
can result from the lengths, cross-sectional areas etc. of  the two sections linking 
the pans to the block being different. 

From all this variety of  possibilities one specific case is considered here. This 
is like the simple two-bar representation at the start of  this subsection, with iden- 
tial cross-sections, densities, and thermal properties, but_different lengths. The 
temperature difference AT=TR-Ts has an underlying part ATwith similar proper- 
ties to that for the biased ODE model (w and a cyclic part 

7~T = BRe{[Cs(Ma + iM2) + (M3 + iM4)}e  i'~ . 
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The M's in this expression can be written in terms of  trigonometric and hy- 
perbolic functions with M3 and M4 vanishing when the bars have the same 
length. Now 

17~7] = B~/(M~Cs + M3) z + (M2C~ + M4) 2 

and the coefficients (M2+MzZ), 2(M1M3+M2M4), (M2+M 2) can be fixed by carry- 
ing out three calibrations (over a suitable range at co if necessary). The heat ca- 
pacity for a subsequent sample can then be determined (on solving a quadratic 
equation). 

4.4 Reduc t ion  to the O D E  mode l  

It was noted in w that the underlying measurement gave the same result as 
the discrete-mass model of  Section 2. This can be thought of  as resulting, at least 
in part, from the fact that the specific heat of  the bar (representing the material of  
the actual calorimeter) plays only a minor role when the temperature is changing 
at a constant rate. The same is certainly not true for the cyclic part. The term pc 
has a major effect on the heat equation for the oscillating temperature and hence 
on the q that appears in (34). 

As the specific heat c decreases this term should get less important, the ther- 
mal mass of  the calorimeter reduces in relation to those of  the pans, and the 
model should become more like that of  Section 2. 

In fact it can be seen that the key parameter is ~3l (the ratio of  the geometric 

and diffusion lengths). Taking ~3l=l'~pc/2k tending to zero expression (35) for 
q reduces to 

ZP_x 1 
3 1 + iCRo~K 

with K=3ks/l. Then (34) is simply 7(T = BcoC~Re{ei~t/(K+imClO}, that is (26) with 
no reaction. 

Thinking of  the bar as being made of  Constantan, pc_=4-106 J K -1 m -3 and 

k_=_20 W m -1 K -1. Taking the period of  modulation to be about 1 min, c0=2rc/60 

-_-10 -~ s -1. The value of[3 is then approximately 100 m -l. For a device with linear 

dimensions typically 1 cm, l[3 is then close to 1. 
If  the calorimeter is significantly smaller, or the period longer, then I[3 would 

be small. 
(It should be noted that taking the cross-sectional area to be about 10 -6 m 2, 

which is suggested by a thickness of  0.1 mm and, for a disc, a typical radius of 
1 cm, K is of  size 10 -2 W K -1. With a pan of  heat capacity 10 -2 J K -1 which is 

J. Thermal Anal., 50, 1997 



316 LACEY et al.: MATHEMATICAL MODEL 

equivalent to 2.5 mg of  a material with specific heat 4.10 2 J K -1 kg -1, an angular 
frequency 10 -1 s -1 makes co&/K also about 1 .) 

4. 5 A t h r e e - d i m e n s i o n a l  c a l o r i m e t e r  

Quite general calorimeters (with two or three dimensions) can be examined 
in much the same way as the one-dimensional devices. The calorimeter may be 
thought  of  as a conducting medium surrounding the two pans which have sur- 
faces Ss and SR and temperatures Ts and TR. The outer surface SF of  the calorime- 
ter is, for the present, taken to have a uniform temperature 

A . 

TF = bt + Im{Be '~t} .  

The temperature in the enclosed region (but outside Ss and SR) satisfies the heat 
equation 

OT 
pc--~t = kV2T. 

The device is something like that indicated by Fig. 9. 

S S 
s R 

T = T  T = T  
s R 

pc. -- - 

OT 

Ot 

- kVaT, 

S 
F 

T = T  
F 

Fig. 9 Schematic diagram of  a calorimeter 

The usual procedure is followed and the temperature is written as 

T = b t + T(x) + Im{Br(x)e'~ 

in particular 

C pc- / A^ . 
Tj = b t + T ~  + Im{BTje '~ for j = R, S. 

Balancing the rate of  change of  heat content of  the pans with the heat flow in 
through their surfaces gives 
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dTR _ kI~nndS, = 

SR 

dTs _ k~nndS. (CR + C ~ ) - ~ -  = 
S~ 

Here  0/0n denotes  the normal derivat ive out  o f  the calor imeter  (into the pans). 
Splitting into the underlying and cyclic parts gives 

m 

cR+cs  CR _ dS, - dS, 
pc pc 

SR S~ 

A A A 

io~CRTR ~nn ico(CR + C~) 3T 
T -  as ,  - 

Sr~ S~ 

as well  as having 

T= TR 
^ ~ ._^  

and T=TR on SR, T=Ts and -Ts  on S~, 

T = 0  and 7"=1 on SF. 

Addi t ional ly  the differential equations 

A A pcO) 
V @ =  1 and V2T= if~T where ~2-  

k '  

must  hold. 
Both  temperature variables can be written in three parts 

T =  zo + TRZR + T~zs where the z 's  satisfy 

V2zo=l with zo=0  on SF, Sr~,Ss 

V2zR=0 with zR =1 on & but zR = 0  onSF, Ss 

VZzs=O with z s = l o n  S~ but z s=0  on SF,&; 
A A A 

T = WF + TRWR + T~w~ where the w's satisfy 

V2wj = i~2wj with wj = 1 on Sj and wj = 0 on the other two parts o f  the boundary.  

For a symmetr ic  (unbiased) calorimeter: 

rbZo rbZo 
- J-~s = - J-5-~s = ~/o > 0; 

SR S~ 
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I~-~dS = f0zs n a 0n dS = 71 > 0; 
S R S~ 

IOz~ - I~@.. RdS =72 > O; 
- J On dS = On 

Sr~ S~ 

- J ' ~ d S  = -  fawF _ j--~-n dS  = o~o; 

Sr~ S~ 

fOwsdS fOwRdS- 

St, S~ 

r l a w .  _ 
- J-~n"dS = -j--~-ndS= a2. (36) 

S~ S~ 

The temperatures o f  the two pans can be found by solving the two pairs o f  lin- 
ear equations 

C.~R = 70 -  71~'R -}- 72"Ts 
pc 

and 

CR + Cs Y2TR- 71-J's - -  _ % +  

pc 
A 

i f.o C R TR /x /x 
- - =  0~o - eqTr~ + o~2T~ 

k 

and 

i~o(CR + Cs) ~, /, 
= C~o + r + cqTs; 

k 
A A 

for Tp,, Ts, Ts and T~. 
The underlying part then satisfies 

Cs  
(71+72)(TR-Ts)- 

pc 

so the dimensional temperature difference is 
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- -  bC~ bC~ 
AT= - -  

k(~q + 72) - K 

for an effective heat-transfer coefficient K=(Tl+72)k. 
The underlying measurement then takes the usual form 

- K A T  
C s -  

b 

Turning to the cyclic part, 
A 

imC2T~ imCRq.Z ^ 
- ~(oq + m )  + - ~ - - j c  J,~ - r~), 

k 

and the dimensional temperature difference satisfies 

�9 imt } A A BlmCse . 
AT = Im{BATe ''~ = Im (oq + c~2)k + imCR ' 

taking the cyclic part of  T~ to be 1"s=Bsincot=-Im{Be i'~t} as normal. Then 

{ eimt } 
zXT= BmC~Re - -  (37) 

(C~l + c~2)k + imCa " 

This gives the standard results: the cyclic measurement of  heat capacity is 

C~ = IkT-] I(cq + o ~ 2 ) k  + imC~l, 
Bm 

where [7~/] -- amplitude of  the temperature difference and [(al+a2)k+icoCR[ is a 
calibration factor, and there is a phase lag 

= ~b =- Arg{ (~ ,  + < ) ~  + i~oc~} 
_lI(t)C R -b klm{oq-I- o~2}1 

=tan L i7e~7171,7~- ; 

In principle the ods can be determined by numerically solving the boundary- 
value problem for wp. and evaluating (36) so the calibration factor and phase lag 
could be calculated for any given frequency co. In practice it will be easier to find 
these two quantities from a calibrating run. 

To calculate oq and or2 it is necessary to find the complex scaled temperature 
w=wR which satisfies 

pCO3 
V2w = ig~w (with f~ = T ) ,  w = i on sa, w = 0 on SF and &. 
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The real and imaginary parts ofw=u+iv can be determined from 

V 2 u + ~ v = 0 ,  V2v=~u,  u = l  and v = 0 0 n S r ,  u = v = 0  onSvandSs. 

Eliminating v gives 

V4u + f~2u = 0, u = 1 and V2u = 0 on Spo u = V2u = 0 on SF and Ss. 

This model also reduces to the ODE case in certain circumstances. Taking 
f~l 2 to be small, for l a typical distance in the calorimeter, w can be sought for- 
mally as 

w = Wo + ~iwl + ~2W2 -t- . . . .  

I f  this power series is substituted into the differential equation and boundary 
conditions then: 

VEwo=0, wo=l OnSR, Wo=00nSF and Ss, so WoispreciselyzR; 

V2Wl=ZR>0 with wl=0 on SF, SR and Ss determines (in principle) wl 

and makes it negative with Owl/~n>O on all parts o f  the boundary. (The results 
about the signs of  the w's come from the Maximum Principle for elliptic equa- 
tions, see, for example [ 15].) Then 

t~l - j--~'n d S  . . .  
SrL S• SR SR 

-y~ + i m ~  + m2~"~ 2 -F, 

mj = I~JdS>O for j=l ,2 .  with Likewise 
S~ 

0~2 --  "[2 - -  i~nl - ~22n2 

on writing nj=I-~J dS>0, j = l ,  2. 
SR 

Then (37) becomes 

~ff" = BmCsRe e 
(Y1 + y2)k + i~(m~ - nl) + ~2(m2 - n~) + ... + ImCR 

the cyclic measurement is 

-'All ~/FK + ~12(m2- nz)]2+ [OCR + ~-l(m,- Hi)] 2 
Bo / d 
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= KI~, II'~,n ql + (mCJK) 2 + 2f~(m~ - nl)mCR/K...., 
Boa 

and the phase lag is 

%=tan_~ImCR + ~ (m ~-n~).. "1 
K . . .  

The results of Section 2 are recovered on taking s ~ 0. 
Similar results are possible even taking the calorimeter to be inhomogene- 

ous, so that p(x)c(x)OT/&=-V(k(x)VT), the calorimeter to have convective as well 
as conductive heat transport, and it to have an outside boundary condition of  the 

/k 

form T=To(x)+tTl(x)+Im{B(x)e l~ on SF. 
In Sections 2 to 4 the possible sources of  error have been comprehensively 

reviewed. The general conclusions are that: the calibration method already de- 
scribed in the literature [3] should give reasonable results, provided there are 
many modulations over the course of  a transition, i.e. the frequency is in some 
sense high; the deconvolution of  the signals into reversing and nonreversing 
events should make sense; and the baseline subtraction procedure described 
above and in [1] will enable the in and out-of-phase components of  the cyclic 
signal to be quantitatively calculated using the phase lag. Improving thermal 
conduction between the baseplate and the sample by use of  helium as the purge 
gas will reduce errors especially as the modulation frequency is increased. 

5. Phase transitions 

In this last section some simple models for change of  phase in the sample are 
considered in conjunction with the basic ODE representation of  Section 2. The 
intention is to understand how latent heat (absorbed by the sample as it changes 
to its high temperature phase) affects both the underlying and cyclic measure- 
ments. 

5. 1 P o l y m e r  mel t ing  

A very simple model might be to regard the material as changing its specific 
heat (without any absorption of latent heat) over some temperature range, with 
the specific heat determined purely by the temperature. The outcome of an ex- 
periment is then as in Section 3 or, more simply, in w but evaluating C~ at 
Ts: C~=C~( To+b t). 

A variation of  this model to include the latent heat of fusion is possible. The 
sample might be thought of  as mixture having a whole range of  different molecu- 
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lar weights. There would then be some distribution describing the composition, 
for instance Z(W)=proportion, by mass, of  the polymer with molecular weight 
<W. The polymer of  molecular weight Wis taken to have a melting point To(W), 
with Tc in some bounded interval, say (7'1, T2). Possible profiles of Z and T~ are 
sketched in Fig. 10. 

T, b) 
�9 T 2 
I 

Q) 

Z T1 

0 ,~ 0 -D- 
W W 

Fig, 10 Mass distribution (a) and melting point (b) against molecular weight 

Supposing for simplicity that the specific heats of  the crystalline material and 
melt are identical the amount of heat needed to increase the temperature of a 
sample of mass M from T to T+ST is then (c~ST+L ~Z)M. The increment 5Z 
might be taken to be given by 5Z = (dZ/dT) ST= h~T, where h is the distribution 
function for the proportion of polymer with given melting point (Fig. 11). 

Fig. 11 Distribution of  molecular weight with temperature 

The heat input must then be (cs+Lh)2tFdT=C~ST, where Cs(T)=(c~+Lh)Mis the 
effective heat capacity of  the sample. In such a model the effect of the phase 
change is simply to increase the specific heat over the range of  temperatures 
where the change occurs (Section 3). 

The following models are more sophisticated and cannot be described by a 
temperature-dependent specific heat. 
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The case considered above was first articulated by Reading et al. [ 1 ] where it 
was observed that "If the crystallite melting temperatures have a distribution and 
they are able to melt rapidly without extensive superheating, something that 
would normally be true, then at least part of  the MTDSC signal will be in phase 
with dT/dt  as this determines the speed at which a fresh population ofcrystallites 
find themselves at their melting temperature." In this simple model, where no re- 
arrangemetn occurs, all of  the signal will be in phase with dT/dt and there will be 
no peak in the phase lag. There may be some polymers where this model holds 
because rearrangement is slow or non-existent. We will be considering the case 
where rearrangement occurs in a future publication. 

5 .2  P o l y m e r  c r y s t a l l i s a t i o n  ( the  A v r a m i  e q u a t i o n )  

The Avrami equation is a model for crystallisation of  a polymer and should 
ideally only be applied to cases of  decreasing temperature, b <0. 

The crystallinity of  the sample (proportion of  crystalline material), a, de- 
creases with time and, using the form given in [ 16] and [ 17], is given by 

a = l  - e x p -  k~(T~)dt 

where ka >0 is the crystallisation rate function or 

t 
N 

a = 1 - e -C", G~ = ~ka(T~)dt. 
o 

The rate of  heat release by the sample is 

LM~t NLMkG~-I -G~. - f =  = e 

The sample has, as usual, temperature T~=bt+Bsino3t, and it is possible to pro- 
ceed as in w and w The crystallisation rate function is linearized (sepa- 
rated into underlying and cyclic parts), 

k, = ka(To + bt) + Bk'~(To + bt)sincot + . . . .  ka + Bk'asino3t + ..., 

and the integral Ga is 

with 
t 

Ga = Ik,(To + bt)dt and 
o 

J. Thermal Anal., 50, 1997 



324 LACEY et al.: MATHEMATICAL MODEL 

t 

G. = Ik'.(To + bt)sincotdt 
0 

1 
-_- =-(k'a(To) - k'a(To + bt)coscot) if co is "large". 

co 

Once again we are able to linearize quantities of  interest through the suppo- 
sition that B is sufficiently small. Spl i t t ing-f into  its underlying and cyclic parts 
gives 

- f =  NLMe-~"{-kaG~ -1 + B[k',GaN-'sinmt + ka((N- 1)G-~ -2-  NG](N-~))G,I} 

=_ NLMG~<e-~ (-s + Bk'~sinmt) 

= r + Br'sincot 

with r=-NL2t~a~a-~eg"~ and r'=rlgJk~.. Here it has been assumed that 03 is large 
enough for G terms to be negligible. 

It follows that 

t" 
S T  = (bC~ - r) so Cs = Cs - ~ (recall that b < 0 ) 

and 

~r  = c0BRel G + ir'/O)eiO)t I so C~ = ~/1 + (r'/oaCs) 2 . 
[ K +  icoCl~ J 

The phase lag is 

�9 -1 o)CR r'  
qo = t a n  T - tan -1  o~C---~ = % + qoc 

and can be used, as above, to give the improved estimate C~cosq0c. 
There is, therefore, a direct parallel between the kinetic process of  a chemical 

reaction and the kinetic process of  crystallisation [1 8]. Consequently the sepa- 
ration of  the signal into reversing and nonreversing signals has the same mean- 
ing. 

5.3 M e l t  o f  a p u r e  m a t e r i a l  

The sample is taken to be a slab (a thin disc) so that it is essentially one-di- 
mensional. It is taken to be symmetric which means that only one half  need be 
considered. The surface of  the material is x=0, and, for this preliminary work, is 
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supposed to have the temperature T~. The centre is x=l~ (the width of the sample 
is 2/s) and, from the symmetry, the temperature gradient vanishes there: 
OT/-Ox=O at x=l~. 

While the material is changing phase there is a free boundary, say x=s~(t), 
separating the crystalline material in sf<x<l from the melt in 0<x<sf, (Fig. 12). 

T / 

T 

"'-...~elt 

~ ' ~  s crystal 1 
--'-, f ..-4 s ) 

centre line x _ _ 2 t ~  

- -  ._ .0  . . . . .  

Fig. 12 Form the temperature profile across the sample during melting (a) and sample configu- 
ration (b) 

Ii 

Fig. 13 Rate of  heat flow into a melting sample for a simple one-dimensional Stefan model for 
the phase change 
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(As earlier, the actual scales change with the values of b, L etc. and are deliber- 
ately omitted from Figs 12 and 13; here we only indicate the qualitative behav- 
iour.) 

In the two parts the temperature satisfies the heat equation 

~T k 32T O<(X<(Sf and sf<x<ls. 
Oc-~- = bx 2 

For simplicity the density, specific heat, and thermal conductivity are all as- 
sumed to be constant but (given what will follow) it is quite easy to generalize 
this analysis to allow various properties to take different values in the two 
phases or even be more generally temperature dependent. 

To simplify the notation the melting temperature of the sample is taken to be 
T=Tc and the time at which melting starts is t=-0. The free boundary forms atx=0 
when t=-0 and moves towards ls, reaching the centre when the phase change is 
complete. On x=sf the temperature is meting, To, and the usual Stefan condition, 
accounting for the latent heat L, holds 

F q ds f  OT /d3T/sf+ (The left hand side is kxjump in Z-- at sf.) 

L L = pL-g .  
Ox 

To complete the specification of  temperature an initial value (resulting from 
the run up to time zero) must be given and, for conventional DSC, the full Stefan 
problem for Tis: 

~T kO2T 
pc-~-= ~ x  2 in 0 < x < s f  and s f < x <  ls, 

T= To on x=sf, 

T=T~=Tc+bt on x=0, 

~ T] sd" = Sf 

~x J,f_ 9L-~ ' 

bT 
"~-x= 0 on x=t~, and 

. pcbr a _ x)2] < t=0. T = Ti(x) (=- - 2 - ~ 4  - (l~ _ O) at 

(For a fuller treatment of Stefan problems see [ 19].) 
To try to identify the important terms the problem is nondimensionalized. 

Distance is naturally scaled with the half-width ls, x=lsy and s=l~sd. Temperature 
and time should be scaled to get a balance in the controlling boundary condition 
at x--0 (this condition drives the temperature and melting) and, since the phase 
change is thought to be important, in the Stefan condition. Trying T=Tc+T20 (T2 
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is now the size of  the change of  temperature T~ during melting) and t=-t2z (t2=the 
time scale for this process), the two conditions become 

kT_•c)OT d+ pLls ds. 
T20=bt2~ on y=0 and lsL~yjs~_- t2 d z  

All parameters can be eliminated from these two equations by choosing 

P~b~b ""/pLb t:=ls and TE=ts~ ~- . 

Using this scaling the nondimensional Stefan problem takes the form 

30 OZO 
2 - -  em-ff-~ 3yZ i n 0 < y < s d  and i n s d < y < l ,  

0 = 0  on y=Sa, dz' 

0 = z  on y 'by  =0 on y = l ,  and 

= T i <  
0 = 0 i ( y )  T2-0  at *=0.  

2 41pb 
Here e~=pcl~/tzk=-clsV~-s is the Stefan number and, for sample sizes of inter- 

est, is generally very small (taking c___-2.103 J kg -l K -~,/~___-10 -4 m, p=103 kg m -3, 

k~=0.2 W m -1 K -a, L=6 . 104 J kg -l, ~m_=_2 - 10-3): during the melting the specific heat 
is unimportant compared with the latent heat and the Ieft-hand side o f  the heat 
equation can be neglected. 

The reduced problem indicates that 0 is linear for bothy<sd andy>sa. The lat- 
ter in conjunction with 0=0 on y=Sd and O0/-Oy = 0 on y=l ,  means that 0=0 for 
Sd<y<--l. (In particular 0=0 at x=O ; when only specific heat has to be accounted 
for the temperature variation within the sample is very small). Using the condi- 
tion ony=O gives 0 = z(1 -y/so)for O<y<sa. Application of  the Stefan condition 
yields a differential equation for su, 

dSd 

d'r Sd' 

which integrates to give Sd='C since Sd=0 at "~=0. (Then 0 = "c - y  for 0<y<sd.) 
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The solution is also, to leading order, the leading approximation to the under- 
lying part of  the solution for MTDSC. Returning to dimensional variables the 
temperature is T=Tc for s~_x<l~ and 

T = Tc + bt  + B s i n o 3 t  - X ( b t  + Bsincot) for 0~-X<~Sf, 
s f  

The free boundary is controlled by 

which means that 

ds--'2f = (~-1 x dt bt+Bsino3t sf 

 Ib? + 2B(1 - c~176176 co 

or -- 4g--b F,+ 1 sf_ pL l_ ~t t (1 - cosmt) 

(38) 

i fB is sufficiently small for us to be able to linearize. (For the time derivative of  
the temperature still to be negligible emX dimensionless frequency must  be small: 
cocpl~/k=-lO-2<< 1 taking co=0.1 s -1 and the earlier values for c, P, ls, and k. It can 
be noted that there is a singularity at t=0 in (38). This results from B/co not being 
small compared with bt 2 at the start of  melting.) 

Taking the cross-sectional area of  the sample to be Sc its mass is 2pSJ~. For 
t<0 it is inert, Cs=2pS~lsc, and likewise for t>tz=ls~/gL/kb. In these two periods, 
before and after melting, the underlying and cyclic measurements (according to 
Section 2, (7) and (8)) give C~=C~=C~. 

During the melting period the rate of  intake of  heat is approximately 

2 p Sc--~LdsfT _=_ 2Sckb~Ii+B'---(sin~176176 o3t 

(Terms of  size I~m and contributions from specific heat are still regarded as be- 
ing unimportant). Melting takes time t2 so cot has a typical size cot2=lsco,lpL/kb. If  
the frequency is still assumed to be high, in the sense that many cycles occur 
over the melting interval, cot2>> 1 and the term (l-coscot)/cot can be neglected. 
Then the rate of  heat flow into the sample is 

Bsino~t') 
dQsdt =- 2Sc kb~-~gL 1 + ~ J .  

The basic ODE model is approximately 
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dAT / Bsinmt) 
CR ~ -  + KAT= 2& kb~pL 1 + ~ ) .  

The usual procedure results in the temperature difference 

AT = ST+ ~T _ 2 S o ~ 9 l  + 2B& @ L  (Ksinmt - mCRCOSmt) 
K t b K 2 + m2C~ 

and heat-capacity values 

Cs = 2Sc'k/-k-~, ~s= 2Sc @b L. 
mt 

for 0 < t < t2 ( Fig. 14). 

Cs 

T~ T~ + lsqpLb/k T 

Cs b 

v.. 
p .  

t 

Fig. 14 Plots of  underlying (a) and cyclic (b) measurements of  heat capacity against tempera- 
ture T s 

From the assumption of"high frequency", rot>>1 for the bulk of the duration 
of  the change of phase so Cs<< Cs. Of course the area of  the rectangular hump in 
the Cs - T p l o t  is GTz=2I~S@L= mass of sample x latent heat. Better estimates of 
Cs and C~, including the effect of specific heat, will be found by getting a more 
accurate solution for Tin the sample as an asymptotic series in powers of the Ste- 
fan number, era. 
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The above model assumes that the base of  the sample can be forced to follow 
the imposed temperature programme. (The same assumption is made in all of the 
analysis presented here.) In practice, for pure materials such as indium, the sam- 
ple cannot follow the programme, thus the above analysis does not apply. We 
shall be considering this in a future article. 

6. Summary 

Our analysis of a heat flux DSC cell under modulated-temperature condi- 
tions reveals that quantitative data on heat capacities can be obtained using the 
simple calibration methods that have already been described, [3]. It also demon- 
strates that the method of  correcting for instrumental factors when exploiting the 
phase lag to divide the cyclic signal into in and out of  phase components pro- 
posed in [1] is well founded and this conclusion is supported by experimental 
evidence. Our analysis describes how, when an irreversible chemical reaction or 
crystallisation occurs, it is possible to separate out the contributions made to the 
total heat flow by the heat capacity the (reversing contribution) and the enthalpy 
of  the reaction or crystallisation (the non-reversing contribution). We have pre- 
sented the first steps toward a more general analysis of phase transitions and will 
be presenting a further analysis of  the glass transitions and real polymer melting 
behaviour in the near future. 

Notation 

a 

ao  

b 
c 

f 
g 
h 
k 

l 
is 
m 
mj 
/7 

nj 
P 
q, qj 

(remaining) mass fraction of  reactant or crystalline material 
initial mass fraction 
temperature ramp 
specific heat capacity 
rate of heat intake by a kinetic process within the sample 
temperature-dependence function of a reaction rate 
distribution function for molecular weights 
thermal conductivity 
function appearing in the Avrami equation 
length scale of  a (one-dimensional) calorimeter 
half-width of  a sample 
complex spatial-decay rate of modulated temperature 
coefficients in a power series for oq (/=1,2,...) 
outward normal 
coefficients in a power series for (Z2 (j=l ,  2,...) 
order of a reaction 
coefficients appearing in expressions for 
AT(j= C, S, D, 1,2,3,4)  
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F 
F t 

S 

Sd 

Sf  

t 

t2 
11 

v 

W=WR~ Ws~ WF 

wj 
x 

Y 
Zo~ ZR~ Zs 

A 
A* 
A + 
Aj 

B 
A 

B 
Bj 
C(73 
C ,G 
Cj 

G 

D 
E 
F,G 
FM, GM, GM, 
G. 
H 
I 
IM, IM 
K 
Kt, Ko, KI, K: 
L 
M 

N 

reaction rate 
temperature derivative of reaction rate 
time used in integrations 
dimensionless position of a free boundary 
position of a free boundary 
time 
time scale of melting 
real part ofw 
imaginary part of w A 
functions of position determining T 
coefficients in power series w (/=0, 1, 2...) 
position within calorimeter or sample 
dimensionless position 
functions of position determining T 
pre-exponentional rate constant 
adjusted pre-exponential rate constant 
scaled pre-exponential rate constant 
coefficients appearing in expressions of cyclic temperature 
in regionj (/=1, 2, 3) 
amplitude of modulation of temperature 
complex amplitude of temperature (a complex multiple of B) 
complex amplitude of 7] (j=F, R, S, RM or SM) 
heat capacity of the sample when it depends up on temperature 
heat capacities of pan and sample 
coefficients appearing in expressions of cyclic temperature 
in regionj (j=l, 2, 3) 
value of sample's heat capacity given by underlying 
"measurement" 
value of sample's heat capacity given by cyclic 
"measurement" 
heat capacity of sample regarding it as a function o fo  
activation energy 
functions of time appearing in a nearly periodic signal 
"measured" versions ofF, G 
function appearing in the Avrami equation 
heat of reaction 
function of time appearing in a nearly periodic signal 
"measured" versions of I 
effective heat-transfer coefficients 
internal heat-transfer coefficients 
latent heat 
mass of sample 
coefficients in expressions for 2~T(j=I, 2, 3, 4) 
exponent appearing in the Avrami equation 
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P 
Qs 

R 
S 
Sb 
Sc 
SF 
SR, 

T 
rE(x) 
Tc 
Te 
Tv, TR, T~ 
T~ ,  TsM 
To 
T~ T1, T2 
roj 
To j, TIj 

AT 
AM 
U 
W 
z(w) 
C~ 

8 
E 

Em 
13 

P 
(Y 
"C 

(p 

(pb, (Pc 

coefficient appearing an AT 
heat contents of reference pan, sample pan plus sample 
gas constant 
a surface 
cross-sectional area of a bar 
cross-sectional area of a sample 
external surfaces of calorimeter 
surfaces of  reference and sample pans 
temperature 
scaled complex amplitude of modulated temperature 
temperature on initiation of melting 
melting temperature 
external temperature 
temperatures of furnace, reference, sample 
temperatures measured for reference and sample 
initial temperature 
typical temperatures 
initial values of  Tj(/=F, R, S, RM, SM) 
coefficients appearing in expressions for underlying 
temperature in regionj of  a one-dimensional calorimeter 
( /= 1,2,3) 
temperature difference, TR-T~ 
coefficients in a power series of  AT(j = 0,1,2,...) 
dimensionless temperature based on reaction rate 
molecular weight 
mass fraction with molecular weight < W 
scaled amount of reactant 
surface integrals of normal derivatives ofw's  (/= 1,2,3) 
spatial decay rate of modulated temperature 
surface integrals of normal derivatives ofz 's  (1 = 1,2,3) 
dimensionless temperature over which C(T) varies 
1 / dimensionless activation energy 
Stefan number 
error in measurement of  temperatures due to location 
ofthermo-couples 
degree of bias 
density 
rescaled dimensionless temperature 
dimensionless time 
phase lag 
baseline and corrected phase lags 
phase of alternative "reference" signal, e.g. furnace 
modulation 
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0 
Oi 
CO 
f2 

ratio indicating importance of coCR compared with K 
("departure from perfection") 
dimensionless temperature 
dimensionless temperature on initiation of melting 
angular frequency of modulation o f temperature 
rescaled angular frequency 
underlying part (not C's, F's, G's, I's) 
cyclic part (not C's, F's, G's, I's) 
derivative with respect to argument (not r) 
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